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ERRATA SHEET
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P. 32 1. 12 read "that"

p. 43 1.6

p. 51 1. 3 yO0

p. 54 1. 6 - 0(X,y,z)

p. 56 1. 7 read "sgtisfies." 2
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TjMOTION O' A SHIP -A LOATIG RIGID BODY

INA SEWA

by Jo J. Stoker'and A. S. Peters

1. Introduction and summry.

The purpose of this report is to develop the mathematical

theory for the motion of a ship, to be treated as a freely floating 4

rigid body under the action of given external forces (a propeller

thrust, for example), under the most general conditions cornpDMile

with a linoar theory and the assumption of an infinite ocean.

This of course requires the amplitudo of the surface waves to be

small and, in general, that tho motion of the water should be

small oscillations near its rest position of equilibrium; it also

requires the ship to have the shape cf a thin disk so that it may

have a translatory motion with finito velocity and still create

only small disturbances in the water* In addition, the motion of

the ship itself must be assumed to consist of small oscillations

relativo to a uniform translation@ Within these limitaticns,

howover, the theory to be presented is quite general in the sonso

that no arbitrary assumptions about the intoraction of the ship

with tho wator are made, nor about the charactor of the ccupling

between the difforont degrees of frodom of the ship, nor e.bout

the waves present on the surfaco of th, sea: the combinedl systom

of ship and sea is treated by using the basic mathematical theory

of the hydrodynamics of a non-turbulont perfect fluid.

i-'
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For examplep the theory presented here would make it possible to

determine the motion of a ship under given forces which is started

with arbitrary initial conditions in a sea subjected to given sur-

face pressures and initial conditions, or in a sea covered with

waves of prescribed character coming from infinity.

It is of course well known that such a linear theory for

the non-turbulent motion of a perfect fluid, complicated though

it is, still does not contain all of the important elomonts needed

for a thoroughgoing discussion of the practical problems involved,

For example* it ignores the boundary-layer effects* turbulent

effects, the existence in general of a wake, and other important

effects of a non linear charactero Good discussions of thoso

matters can be found in papers of Lunde and Wigloy [6 *and Hcvuloek

(31o Nevertheless, it soems clear that an approach to the problem

of predicting mathematically the motion of ships in a seaway under

quite general conditions is a worth-whilo enterprise, and that

a start should bo made with the problom even though it is rocog-

nized at the outset that all of the important physical factors

can not be takun into account. In fact, tho theory prosentod here

loads at once to a number of important qualitative statements
r

without the necessity of producing actul solutions - for example,,

we shall see that certain re.sonant frquencies appear quite

naturally, and in addition that they can be calculated solely

with reference to the mass distribution and the given shapo of

tho hull of the ship, Interesting observations about the charactor

of the coupling between the various degrees of freedom, andcbout

*Numbers in square brackets refer to the bibliography at the end

of this report.



the nature of the interaction between the ship and the water, are

also obtained simply by examining the equations %hich the theory

yields.

In order to describe the theory and results to be worked out

in later secticns of this report, it is necessary to introduce our

notation and to go somewhat intc dotnils. In Fig. 1.1 tho dispo-

sition of two of the coordinate sy3tems used is indicated. The

8I

X

Fig. 1.1,

Fixed and Moving Coordinate Systems

system (X,Y,Z) is a system fixed in space with the X,Z-plane in

the undisturbed free surface of the water and the Y-axis vertically
.

upward.

*This choice of axis is not the conventional one; the Z-axis is
usually chosen as the vortic.i axis. It was made because the
authors are accustomed tc working with a variety of Cifferont
water wave problems; and the choice made hore seemed tc: them to
be reasonable from a genernl point of view because of the lrg,
number *of existing two-dimensional problems of intr-est in which
one th-n naturally chooses the y-axis as vertical axis, couplhd
with the fact that the use of the symbol z as a complex variable
is nearly universal.
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A moving system of coordinates (xjyz) is introducodi in

this system the xps-plane is assumed to coincide always with the

XZ-plane, and its y-axis is assiuned to contain tho center of J
gravity (abbroviatod to cogo in the following) of the ship. The

course of the ship is fixed by the motion of the origin of the

moving system; it is then convenient to introduce the speed s(t)

of tho ship in its course; the speed s(t) is simply the mngnitudo

of the vector ropresenting the instantaneous velocity of this

point. At the same time we introduce the angular speed u (t) of

the m-oving system relative to the fi~xed system., ono quantity fixes

this rotation because the vertical axes remain always parallel.

The angle a(t) indicated in Fig.l.lis dofined by

t(1.1) a(t) = .(t)dt

0
In order to deal with the rigid body motion of thu ship it is

convcnient, as always, to introduce a system of coordinates fixed

in the body* Such a system (xtyI,z, ) is indicatod in Fig. 1.2

Y' 1 *Y

X?\ !!

\ .. ...j .. '2 / - -- -p "xI
/"

Fig. .2 "t

Tho Movinst Coordinato Bysptom

jvdy~



The Z',y'-plnno is assiunod to be in the fore-and-aft plane of

symmetry of the ship's hull# and the y'-axis is assumed to corntain

the c* of the ship. The moving system (xtyt,z,) is asswuiod to

coincide with the (x,ysz) system when the ship and the wtor are

at rest in their equilibrium positions* The coge of the; ship will

thus coincide with the origin of the (xt,yt,zl) system only in

case it is at tho level of the uquilibrium water line on the ship;
we therefore introduce the constant yI as the coordinate cf tho
c.g. in the primed coordinate system at such an instant.

T. , of the water is assumed to be given by a velocity
potential* j(X,Y,ZJt); it in turn is therefore to be determined as
a solution of Laplace's equation satisfying appropriate boundary

conditions at the free surface of the water, on the hull of the
ship, at infinity, and also initial conditions at the time t = 0&
The boundary conditi-ns on the hull of the ship clearly will depend
on the moti-n of the ship, which in its turn is fixed, thrugh the
differontial equations for the ra,:tion of a rigid body with six

degrees of froodom, by the forces acting on it - including the

pressure of the water - and its pcsition on vel-cit- at the time

t = O. As we have already stated, we mako no further rostr.tctivo
assumptions except those needed t. linearizo the problem*

Before discussing the linearization we intorpolato a brief
discussion of the relation of the presont work to that (f other

writers who have discussed the problem of ship motions by means

*Thus it is implied that we deal with an irrotational motion of a
non-viscous s fluid*
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of the linear theory of 1rrotatiornal waves. The subject has a

lengthy history, boginning with Micholl [ 8 ] in 1898, and continu-

ing over a long period of years in a sequence of notable papers by

Havolook, boginniing in 1909. This work is, of course, included as

-a special aso in what is presentee. hurk.. Extensivo' and up-to-cThte

*biblioeraphios can be found in the papers of Woinbium (10] and

Lundo[7]. Most of this work considors the ship to be hold fixed

in space while the water streams past; the question of interest

is then the calculation of the wave rosistanco in its dopundenco

on the form of the ship. Of particular interest to us her are 

papors of Xrjlov [5], Weinblum and St. Donis [9], and Haskind (1],

all of whom deal with less restricted typos of motion. Krylav

seeks the motion of the ship on the assumpticn that tho pressure

on its hull is fixed by the prescribed motion of the water without

roferenco to the back effect on the motion of the water in-ucod by

the motion of tho ship. Woinblum nd 't. Donis omplcy a cmbined

theoretical and ompiricil approach to the problem which invrlvos

writing down oquations of motion of the ship with ceofficionts

which shoulef be in part deterciinod by t oc'ol oxpcririonts; it is

assumed in addition that there is n, ceupling botwoon the liffor-nt

degrees of freedom Involvo in the geionral nmtion of the shi.p.

Haskind attacks the problom in the s,.mo dogro of gnrality,

and under the soeio goneral assumptions, as the authors; in the

ond, however, Haskind derives his theory completely only in a

certain special case* Haskind's thc:ry Is also not the sr.rio as

I I
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the theory presented horo, and this is caused by a fundamentaX

difference in the procedure used to derive tho linear theory Cron

the underlying, basically nonlinear, thecry. Haskind dovolopsa his

theory, in the time-honored way, by assuming that he knows a priori

the relative orders of magnitude of the various quantities inwo3veod.

Applied inathomaticians are not often deceived in following such a

proco0ure, but the present case is exceptional both because cT

its complexity and because of the fact th--t it is esscnti .l t)

consider terms which are not all of the same order. The n.uthcrs

also tried tD attack the problei (without being aware at the tirao

of the existence of Haskind's work) in this same way, but invarL-

ably arrived at formulations Vhich seemed to be inc,,nsistont.

Consequently thoy felt it neoessary to proceed by a formal der-oLop-

nent with respect to a small paramoter (eszonti.ally the broadtl-

length ratio of the ship); in doing so every quantity was dcve 1o:ed

systomtically in a formal series (fcr a similr typo of discu ssjof

see F. John [4]). In this way a c::rroct theory sh-uld be obtancd,

assuming the convergence of the series - .nd the authors sLo n-o

reason to doubt that the series would converge for sufficicntl=

small values of tho parameter. Asi-o frc.m the relative sa.fety

cf such ,u motho.-d - purchasod, it is true, at the price of makisig

rather bulky calculations - it has an additi-7nal advantage, i.,,

it makes possible a consistent procedure for deterining -my

desired higher :.rdor corrections. It is not or.sy to compare

Haskind's theory in detail with the theory presented hero. Howovo-,

" ,I . _". i2:... ... . . ......



i16
it onh be stated that cort.in terms, callod damping terms by

Haskind and considored to be of importanco by him, are tonrvs that

would, in the theory prosented her.o, be of highor order than any

of thoso retained by the authors; consequently the authors fool

that conclusions drawn from such torns may well be illusory unless

some evidence is presented which shows those terms to be the most

important among the very large number of differcnt terms of that

ordor which would occur in a formal .volopmont. A more prociso

statement cn this point will be made later.

The procedure followed here bogins by writing the oquatiorn

of the shipts hull relativc to the ccordinato system fixee in the

ship in the form

(1,2) zI + Ph(x=.,y) , .z' 0 ,

with P a small dimonsionltss paramotoro This is the parnu oter

refor od to above with respect to which all quantities will be

developed. In particular, the velocity potential *(XY,Zitjp) .

s(xy~z;t;P) is assumed to possess the development

(1.3) (xy,z;t;P) = M1 (xyzjt) + P%2 (xyzjt) + ..,.*

The free surface elovation j(xpzti;P) and the speed s(t;|) and

angular velocity w (t;|) (cf. 1.1) are assumed to have the

devolcpmonts

I _
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(1o4) It(xDztlp) = P 1 x3(,zjt) + P 12 ( xtz;t) +

(1.5) s(tlp) - s(t) + Ps1(t) + ego -4;

(1.6) ,(t;p) = OW(t) + P"(t) + fee

Finally, the vertical displacement yc(t) of the center of gravity
ci

and the angular displacements 9l, 92$ 0 of -the ship with respect
3

to the x)y, and z axes respectively are assumed given by

(1.7) Q~(t;P) P Gil(t) + p2 eP0(t) +..., =1,2,3,

(1.8) yO(t;i3) - yo = Pyl(t) + 32y2(t) + ...

These relations imply that the velocity of the water and the

elevation of its free surface are small of the same order as the

"slenderness parameter" P3 of the ship. On tba other hand, the

speed s(t) of the ship is assumed to be of zero ordor. The other

quantities fixing the motion of the ship are assumed to be of.

first order, except for w(t), but it turns out in the end that

(t) vanishes so that w is also of first order* The quantity

in (1.8) was dofined in connootion with the doscription of

Fig l.2; it is to be noted that we havo chosen to express all

quantitios with respoct to the moving coordinato system (x,yz)

indicated in that figuro, The formulas for changes of coordinatos

must be used, cnd they also are to bo dovolopod in powers of P.

for example, the equation of the hull relativo to the (x,y,z) '

ooordinato system is found to be

._-.. ..
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z + PQ21 x -x Ll(y-y) - Ph(x,y) + ... = 0

after developing and rejecting seoond and higher order terms in 3.

In marine engineering therc, is an accepted terminology for

describing the motion of a ship; we wish to put it into relation

with tho notation just introduced. The angular displaemAnts are

named as followss 1 is the rolling, *2+a is the yawing, and

3 is the pitching oscillation. The-quantity sl(t) in (1.5) is

called the surge (i.o., it is the small fore-and-aft motion rola-

tive to the finito speed so(t) of the ship), while y. fixes the

heave* In addition, there is the sido-wiso displacemont (in first

order it might be denoted by z1(t )) rofored to as the sway; this

quantity, in lowest order, can be calculated in torms of so (t) nd

the anglo a definod by (1.1) in terms of w(t) as follows:

(1.9) P1 1 (t) 1 M sa= ps 0 C (t)dt,

since ,,O(t) turns out to vvnish. In one of the problems of most

practical intcrost, i.e. the problem of C. ship that has bccn moving

for a long time (so that all transiunts hv.vo disappoarod) under

a constant propoller thrust (considorod to be sinply a force of

constant magnitude parallel to tho kool of the ship) into a seaway

consisting of a given system of simple harmonic progressing waves

of given frequency, one expects that the displaoemont components

would in general be the sum of two torms, one indopondort of the
time and representing the displacements that would arise from - - -

--- ~ '.' - , -, ::w -
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motion with uniform velocity through a calm soa, the other a term

simple harmonic in the time that has its origin intho forces

arising from the waves coming from infinity. On account of the

Ssymmetry of the hull only two displacements of the first category

would differ from zezos one in the vertical displacement# iee.

the heave, the other in the pitching angle, i.e. the angle 3*

The latter two displacements apparently are referred to as the

trim of the ship. In all, then thoro would be in this case nine

quantities to be fixed as far as the notion of the ship is con-

corned: the amplitudes of the oscillations in each of the six

degrees of freedom, the speed so, and the two quantities deter-

mining the trim.

We proceed to give a summary of the thoory obtained when tho

series (1.2) to (1.8) are inserted in all of the equations fixing

V the motion of the system, which includes both the differontial

oquations and the boundary conditionsp and any functions involving

are in turn developed in powers of p. For examples one needs

to evaluate /. on the freo surface y =*i in order tc express the

boundary conditions there; ono calculates it as follows (using

(1.3) and (1.)

(1.10) iX(xV,z;tiP) = P[ X(xoust) + I#l(Xostt) +

+P 2 [1/2x + 42xy +

-M1x(XSOzit) + r3~ lxCv (Xe0 sjt) + /.,(XO~zjt)J +

it



We observe the important fact - to which roforence will be made

later - that the coefficionts of the powers of p are evaluated

at y = 0p ioe. at the undisturted equilibrium position of the

free surface of the water. The end result of such calculations$

carried out in such a way as to include all torms of first order

in is as followst The differential equation for is, of

course, the Laplace equations

nlxx + 177 +  lzz 0

in the domain y < 0, ice. the lower half-space, excluding tho

plane area A of the xy-plano which is the orthogonal projoction

of the hull, in its equilibrium position, on the x,y-plxne. The

boundary conditions on i are

ilz = So (hx-21) + (wl+ 2 1 )x - Qil(y-y,), on A+
(1.12)

,z= -so (hx+O2 1 ) + (4 1+02 1 )x - (YY' on A

in which A+ and A. rfr to the two sides z =0+ and z 0. of
the plane disk'As The boundory conditions on the free surface are

(1.13) at y 0.

, 1
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The first of these results from the condition that the press re

vanishes on the free surface, tho second arises from the kinematic

free surface condition. If So "1,21, d iiwere known functions

of t, these boundary conditions in conjunction with (1.11) and

appropriate initial conditions would serve to determine the function

-i nd nI uniquely; i.e. the velocity potential and the free surface

elevation would be known. In any case, the function I which we

repeat, fixes the lowest order term in the development of the

velocity potential $ - could be in principle determined, because

of the linearity of the problem, as a linear combination of harmonic

functions *i having so, 1 + *21,021 and Oil as time-dependent

coefficients:

(1.14) /l(x,yz;t) sol(xyz) + (44I + e2 1 )# 2 (x'y'z)+#2 1 * 3 (xyz)

+ 1n,4(xyz) + *5(xyz:t).

The harmonic function wculd be determined through initial con- I. 

diticns and th.. con(iticn fixing the wave train coming from co

that is, it contains tho part of the solution arising from. the

non-h6mogeneous conditions in the problem.

Before continulng to describe the relaticns which determine

the time-dependent coefficients in (1.14) as well as tne cther

unknown functicns of the time which fix the moti(.n cf the ship, we

digress at this point in orler to discuss some ccnclusions arising

from our developments and concerning two questi:ns uhich recur

again and again in the literature. These issues cnter around the

iA
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question: what is the correct manner of satisfying the boundary
conditions on the curved hull of the ship? Michcll employed the

condition (1.12), naturally with 1 09li on the basis

uf the physical argument that so.hx represents the component of the

velocity of the watr normal to the hull and since the hull is

slendor, a good approximation would ro. ult by using as bounary

conition the Jump condition furnished by (1.12). Havolock and

others havo usually fcllowed the sr.vu practice. However, cnu f£rids

constant criticism of the resulting theory in the literature

(particularly the engineering litora turo) because of the fact that

the boundnry c-indition is not satisfied at the actual position -If

the ship's hull, and various proposals havw boon made to improve

the approximation. The authors fool that this criticism is beside

the pint, since the ccndition (1.12) is simply the consequence of

a reasonable linoarization of the problem. To take account of the

boundary condition at tL actual positin of the hull wculd, of

c ursoo bo more accurnte-- but then, it would be necessarj to deal

with the full nonlinear problem and make suro that all of the

essontial correction terms of a givcn ordor wore btainod. In

particular, it wc'uld be necessary to ox m ino the higher order

terms in the conditions at the free surface - after all, the con-

ditins (1.13), which are also used by Hicholl and Havelock, are

satisfiod at y s 0 'nd not on the actual displace, positi-,n of the

froo surfaooe Ono way to obtain a more accurate theory would boo

of courso, to carry out the perturbation scheme outlined hore to

higher order terms.
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Still another point has como up for frequent discussion (cfep

for example, Lunde and Wigley (6]) with roforenco to the beundary

conditirn on the hull. It is fairly comon in tho literature to

retor to ships of Michell's typo, by which is mont ships which

are slondor not enly in the foro-and-nt direction, but which are

also slonder in the cross-soctions at right anglos to this diroc-

tion (of. Fi*g*l'3) so that h,, in our notatior is small. Thus

ships with a rather broad bottom (of* Fig1.3), or, as it is also

put, with a full mid-section, aro often considered as ships to

which the present theory does not apply* It is true that Y may

Y y

-~0 Z -.--------. z

/~ Vi

(a) (b)

Fig. .1.3.

Ships with full and with narrow mid-sections

become rather large near the kool of the ship for cortcain typos

of cross-sections, but nuvortholoss the linoarizaticn carried out

abovu should romain valid sinco all that is needed is that the ship

should not create too largo disturbances, and this condition is

jW
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guaranteed by taking a long, slondor ship. (It might also be noted

that h occurs in our theory only under integral signs.) In fact,

there aro oxperimental results (of. Havolock [3].) which indicate

that the thoory is just as accurate for ships with a fall nie.

socticn as it is for ships cf Michcll's typo.

After this digrossion we return once more tn the .'.oscriltion

of the oquati,.ns which dotormino the motion of the ship, and which 'V

arise from dovoloping the equations of ,)tion with rosrect to l

and retaining -rnly the tr ms of order ( and (2 (We observe again

that it is necessary to consider tcrms of both orders.) In d.oing

so the mass M of the ship is given by M = MI(, with M a constint

since we assume the average density of the ship te be finite and

its volume Is of course :f order 3. The moments of inertia are

also of order 3. The Fropoller thrust is assumed to be a force of

magnitude T acting in the negative xv-diroction and in the

x',y'-plane at a point whose y'-coordinato is -t; the thrust T is

of order P2, since the mass is of order .P and accolrations are

also of order P.

The terms of order -3yield th, following crxi-iticons;

(1.15) 0

(1,16) 2pg S (3hdA -M 2(3g
'A

(!o17) '

A x(hdA 0 ,
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(11_ _ : 0A
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(1.19) [CIA 0 1 -

A ~d it0 I

The symbol E ] occurring hero moans that the jimp in the

quantity in brackets on going from the positive tc the nogativo

side of the projected area A of the shipts hull is to be t-ken,

The variables of intogration are x and ye The oquation (1.15)

states that the torm of order zero in the speed is a ccnstant, and

hence the motion in the x-direction is a small oscillatim rola-

tive to a motion with uniform volocity. Equatinn (1.16) is an

expression (.f tho law of Archimoeess the rest position of oqui-

librium must b0 such that the weight of the ship just oquals the

weight of the water it disl1aces. Equation (1.17) expresses

anothcr law of oquilibrium of a floating budy, i.o. that the cantor

of buoyancy sh'uld be on the same vertical line as tho center of

gravity of the ship. The remaining three equations (1.18, (1.19),

and (1.20) in tho group sorve to deotorino the displacoments

Q]1I 421P andcol# which o ccur in the bcundary condition (1.12) for

the voloc.ty potontial 4i* As we have alroady remarked, tho velo-

city pctontial i can be writton in tho form (1.14) as a linoar

combination of harmonic functions with thoso unknown and timo-

dependont displacements as coaffioionts| insortion in equations

*~-*-_ _A



(l1 8 ), (1.19), and (.20) clearly loads to a coupled system of

ordinary difforontial equations with constant coofficients for

ll# and ,WX, which is of second order in 9ll'a1 and of

first order in & (thoush also of second order in the angular
t

displaoemont a ~ ~w(t)dt). Tho coefficients of those difforon-

tial equations are, of course, obtained in terms of integrals over V.1

A which involve the known functions *i(xy,0.'Ot). If the spc;d 'A

= const. (which cocurs in (1.14)) is'known, it follows that

tho system of differential equations for Ql(t)o @21 (t), and w1(t) V

would yield those displacements uniquely once proper initial

conditions are proscribed. We shall soc in a momont that so is

fixed by a condition that is indepundent of all tho unknown dis-

placements - in fact, it depends only on the propeller thrust T

and the shape of the hull - and consequontly we have obtained a

result that is at first sight rather surprisingS the motion of

the wator, which is fixed solely by /1' is entirely indopondont

of the pitching displacement Q3 1 (t), the heave yc(t), and the

surge s 1(t) ise. of all displacements in the vertical plane

except the constant forward speed sc A little roflecticne '1
however, makes this result quite plausiblo: Our the ry is based

on the assumption that the ship is a thin disk where thickness

is a quantity cf first order dsposuC v:rtioally in the water,

hence only the finite displacemonts of the disk parallel tu this

vertical plane - croate oscillattins in the water that are of

second order at least. On the other hand, displacements of first

?:
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order of the disk at right anglos to itself will create moti-ns in

the water that aro hiso of first order. One might seek to describe

the situation crudely in the following fashion. Imagine a knife

blade hold vertically in the w"toro Up-and-down motions of the

knife ovidently produce motions of the water which are of a quite

different order of magnitude from motions produced by displacoments K

of the knife perpendicular to its blade. Stress is laid cn this

phenomenon hero because it helps to promote understanding of other

occurrences to be described later.

The terms of second order in P yiold, finally, the following

conditions I

(1.21) M , - (h ( it - dA + n,

(1.22) M1 ? - --2pg 1 (y1 + xe3.)hdx
L

+ {(hy+Qll)(Vltso/lx) I+ (hy'll)($it'"n16x)I"dA,A

(1.23) I31@31 f-2pg3 1 A (y-'Y)hdA 2pgy.rI  xhdx

- 2g03  Ld + IT + p I jx (m h1/ts~X.d

We note that integrals over the projected water-line L of the ship Jel .

in its equilibrium position occur in addition to integrals over the

*m V



vortical projection A of thu entire hull, The quantity I31 arises
iISfrom the rolation I a 0I1 for the moment of inortia I of the ship IV

with ruspoct to an axis through Its c.g. parallel to the .t -axis#

The equation (1.21) determines the surge S,# and also the speed

S (or$ if o ne wishes, the thrust T is determined if a is assumed

to be given)# Furthermore, the speed so is fixed solely bY T and

the geometry of the ship's hull. This can be soon, with reference

to (1.14) and the discussion that accompanies It, in the following

way. If i' and 0 are constants, then they must, as one

could show# be identically zoroj hence the term ao*1 in (1.14) is

the only term in i, that is independent of t. It therefore

determines T upon Insertion of I in (ll), This term, however,

is obtainod by determining the har'ionic function *1 as a solution

of tho boundary problem for ~lin the special case in 'which

11 =  21 1 * 0; hence, as one sees from (1.12) and (1.13),

*1 is fixed by s and hx alone. In fact, the relation between a 1
and T is exactly the same relation as was obtained by Micholl.

(It will be written down later.) In other words, the wave rosis-"

tance is now soon to depohd only on the basic motion with uniform {
speed of the ship, and not at all on its small oscillati-ns rolative

to that motioh If, then, effects on the wave resistance duo to

the oscillation of the ship are to be obtained from the theory,

it will be necessary to take account of higher order terms in order

to calculate thom Once the thrust T has boon dotermined the f
equations (1.22) and (1.23) form a coupled systom for the dotermin-,

ation of and @31' since l and 9ll have presumably boon V.

'.11 ftWj
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determined previously. However, it is not quite correct to say that

the surge s, the heave y1 , and the pitching oscillation 031 are

not coupled with the roll, yaw and sway since the latter quantities

enter into the determination of I' Thus our system is one in

which there is a great deal of cross-coupling. It might also be

noted that the trim, i.e. the constant values of yl and about31aou

which the oscillations occur are determined from (1.22) and (1.23)

by the time-independent terms in those equations -- including for

example, the moment lT of the thrust about the c.g.

We have now given the complete formulation of our problem,

except for initial conditions and conditions at co. Boforo saying

anything about methods for finding concrete solutions in specific

cases, it has some point to mention a number of conclusions, in

addition to those already given, which can be inforred from uur

oquations without solving them. Consider, for oxamplo, the oqua-

tions (1.22) and (1.23) for thu heavo yl and the pitching oscilla-

tion C31' and make the assumption that the integral / xhdx = 0
L

(which means that the horizontal section of the ship at the water

line has its cog. on the same vertical as that of the whole ship).

If this condition is satisfied it is immodiatoly sen that the

oscillations 031 and y, arc not coupleod. Furthormore, those

equations are soon to have the form

- -
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K (1.2 ) + 2yl * p(t)

(1.36) + 'h 31  q(t)

with

2pg hdx
*(1.27) .,2. L ./i

MI
11

2pg[ S (y-y )hdA + J x2hdx]
2 A L

31

It follows imnmcdiatcly that rosonanceo is possible if p(t) has a

harmonic component of the form A cos(Xit+B) or q(t) a component of

the form A cos(I 2t+B); in other words, one could expect exceptionally

heavy oscillaticns-if the speed of tho ship and the soa way were

to be such as io load to forced oscillations having fr,.qucncios

close to those values. One observes alsc that those reosnant

froquoncios can be computed without 'roforonec to the motion of the

sea or the ship8 the quantitios Xl, 2 depend only on the shape of
the bl*

In spite of the fact that the linear theory presented hero must

be used with caution in ralation to the actual practical prcblems

*The equation (1.27) cnn be intcrprctod in the following way: it
furnishes the frequency of free vibration of a system with one
dogroo of freedom in which the rostoring force is prcportional to
the weight of wator displaced by a cylindor of cross.socti,. area .4.
2 S hdx when it is immersed vertically in wator to a depth yi

' 1

2,- , .'-.
," ____,. :
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concerning ships in motion, it still seems likely that such

resonant frequencies would bc significant if hchappenod to

occur in the terms p(t) or q(t) with appreciable amplitudes.

Suppose, for instance that the ship is mcving in a soa-wjy that

consists of a single train of simple harmonic progressing pl.no

waves with circular frequency d which have their crests at right

angles to the course of the ship* If the speed of the ship is s0

one finds that the circular excitation frequency of the disturbances

caused by such waves, as viewed from the moving coordinate system

(x,y,z) that is used in the discussion here, is C-+ -- since
g '

2 is 2a times the reciprocal cf the wave length of the wave train.

Thus if n1 ad X2 should halpen to lie; near this value, a heavy

oscillaticn might be expected. Ono can also see that a change of

course to one quartering the waves at anglo y would load tc a4

circular oxckittin frequency C + s cos Y = and naturally

this would have an effict on tho amplitudes of the rosp.nsoe.

It has already boon stated that the work presented hero is

related to work published bY Haskind [1] in 1946, and it was

indicated that the two theories differ in same rospocts. We have

not made a comparison of the two thoorios in the gonoral case,

which would not be easy to do, b t it is possible to make a compari-

son rather easily in the special case treated by Haskind in details

This is the special case treated in the second of his two papors

in which the ship is assumed to oscillate only in the vertical.

:. K
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plane - as would be possible if the sea-way consisted In trains of

plane waves all having their crests at right angles to the course of

the ship. Thus only the quantities sl(t), yl(t), and 931(t), in

our notation, would figure in fixing the motion of the ship. :1

Haskind treats only the displacements yl(t) and 931(t) (which are

-- denoted in his paper by 4(t) and *(t)), for which he finds differ-

ential equations of second order; but these equations are not the

same as the corresponding equations (1,22), (1.23) above. One

observes that (1.22) contains as its only dorivative the second

derivative yl and (1.23) contains as its sole derivative a term

with 93 1 | in other words there are no first derivative terms

at all, and the coupling arises solely through the undifferentiated

terms. Haskind's equations are quite different since first and

second derivatives of both dependent functions occur in both of4

the two equations; thus Haskind, on the basis of his theory,

can speak, for example, of damping terms, while the theory pro-

sented here does not yiold any such terms. The authors fecl that

there should not be any damping terms of this order for the follow-

Ing reasons; In the absence of frictional resistances, the only Iway In which energy can be dissipatod Is through tho transport of !

energy to infinity by means of out-going progressing waves. How-

ever* we have already given what scem to us to be valid roasons

for blioving that the oscillations that consist solely in dis-

plaeements parallol to the vertical plane produce wave$ in the

water with wnplitudes that aro of higher order than those considered

tA ,



in the first approximation. Thus no such dissipation of energy

would occur* In any case, our theor has this fact as one of its
consequences. Of course, it does not matter too much if some i

Sterms of higher order are included in a perturbation theory, at

' least if all the terms of a certain given order are really present:

at most, one might be deceived in giving too much significance to i

the higher order terms. Haskind also says, however, and we quote

from the translation of his paper (see page 59): i'Thus, for a

ship symmetric with respect to its midship section ... ,..., only

in the absence of translatory motion, i.e. for So = 0, are the

heaving and pitching oscillations independent." This statement

does not hold in our versionof the theory. As one sees from

(1.22) and (1.23) coupling occurs if, and only if If xhdx + 0,
L

whether So vanishes or not. In addition, Haskind obtains no

resonant frequencies in these displacements because of the presence

of first-derivatIve terms in his equations; the authors feel that

such resonant frequencies may well be an important feature of the

problem.

We turn next to a brief discussion of m=thods of solving the

problems formulated above. The difficulties are for the most part

concentrated in the problem of deterrining the first approximation

$1 (x,y,z,t) to the velocity potential. The discussion above assumed

that I had in some way been determined in the form (1.14) by

solving the boundary value problem posed by (1.11), (1.12), (1,13),

and appropriate conditions at the time t=O and at a * In general,

an explicit solution of the problem for i in terms of an integral
f-~

I __
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representation, say - seems out of the question. In fact, as soon

as rolling or yawing motions occur, explicit solutions are unlikely

to be found. The best that the authors have been able to do so

farmAn such cases has been'to formulate an integral equation for

the values of l over the vertical projection A of the sbip's hull;

this method of attack, which looks possible and somewhat hopeful

for numerical purposes since the motion of the ship requires the

knowledge of l only over the area A, is under investigation.

However, if the motion of the ship is confined to a vertical plane,

so that ' l = 21 = O, it is possible to sclve the problems

explicitly. This can be seen with refcrunce to the bourdary

conditions (1.12) and (1.13) which in this case are idr. ntical with

those of the classical theory of Michell and Hzvlock, and hence

permit an explicit solution for which is given later on in

section 4. After il is determined, it can be inserted in (1.21),

(1.22), cnd (1.23) to find the forward speed S O corresponding to

the thrust T, the two quantities fixing the trim, and the surge,

pitching, and heaving oscillations. In all, six quantities

fixing the motion of the ship are deteiuined.

The theory developed in this report is very general, and it'

therefore could be applied to the study of a wide variety of

different problms. For oexirple, the stability of the oscillations

of a ship could be investigated on a rational-dynamical basis,

rather than as at present by assuming the water to remain at rest

where the ship oscillates. It would be possible in principle

to invoatigatc theoretically how a ship would move with a given
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rudder setting, and find thc turning radius, angle of heel, etc.

The problem of stabilization of a ship by gyroscopes or other

devices could be attacked in a very general way: the dynamical

equations for the 3tabilizers would simply be included in the

formulation of tho problem together with the forces arising from

the interactions with the hull of the ship.

In Sec. 2 the general formulation of thd problem is givon;

in Sec. 3 the details of the linearization process are carried

out; and in Soc. 4 a solution of the problem is given for the case

of purely vertical motion, including a verification of the fact

that the wave resistance is given by the same formula as was

found by Michell.

2. General formulation of the problem.

We derive here the basic theory for the motion of a floating

rigid body through water of infinite depth. The water is assumed

to b6 in motion as the result of the motion of the rigid body,

and also because of disturbances at oo; the combined system con-

sisting of the rigid body and the water is to be treated as &n

interaction in which the motion of the rigid body, for example,

is determined through the pressure forces exerted by the water on

its surface. We assume that a velocity potjntial exists. Since

we deil with a moving rigid body it is convenient to refer the

motion to various types of moving coordinate systems as well as

to a fixed coordinate system. The fixed coordinate system is

denoted by O-X,Y,Z. T.e XZ-plano is in the equilibrium position

of the free surface of the water, and the Y-axis is positive

JA
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upwards. The first of the two moving coordinate systems we use

(the second will be introduced later) is denoted by o-x~y~zO and

is specified by Fig* 1.1. The x,z-plane coincides with the XZ-

K plane (lee. It lies in the undisturbed free surface), the y-axis

is vertically upward and contains the center of gravity of the

jship. The x-axis has always the direction of the horizontal
componont of the velocity of the center of gravity of the ship.

(If we define the course of' the ship as the vertical projection

of tho path of its center of gravity on the X.Zwplvane, then our

ccnventicn about the x-axis means that this axis is taken tangent

to tho ship's course.) Thus if R c= (X c SYc9Z C) is the position

vector of the center of gravity of the ship relative to tho fixed
0

coordinate system and hence R c = (X0 OYCOZc ) i~s the Je.otyf

the c.g., it follows that the x-axis has the direction of the

* vector given by

with Iand J unit vectors along the X-axis and the Z-axiso If

Iis a unit vectcr along the x-axis we nay write

(2.2-) swT) 'U

thus introducing the spod s(t) (-f the sip. For later purposzes

we also introduce tho angular velocity vector tj of the mcvi4ng

ocordinata system:



(2.3) -29-T

and the angle a (of*. Fig* 1.1) by

7(2.4) (,(t =r

0

The equations cL' transformaticon f rom one ccordirata Systom

to the other are

{X= x cos a+z sin cL+X~ x W(X-X) Cos a-(Z-Z) si a

(2-5) X= = ;y Y

Z= -x sin aft, Cos a.+Z a z = (X-X ) sin a+(Z-Z 0  cos a <

By I(X,Y,Z;t) we dcnote the velocity potential and write

(2.6) t(X,Y,Z~t) = (x cos a+z sin a+x,,y,-x sin aft cos a+Z,;t)

$ (X'y~z;t)

In addition to the transformation fcrrnulns for the coordinates, we

also need the formulas for the transfornati,,-- cI' various derivatives.

* One finds witho~ut difficulty the ifcllcwin! formulas:

( Ix c o 0 0 5 z c o s a .

(2.7) )y
FZ sin ~a+$. cosa



mt3ose

It is clear that grad 2 I(XY,Z;t) = grad2 $(x,y,z;t) and that 4
is a harmornic function in x,y,z since I is harmonic in X,Y,Z. To

calculate is a little more difficult; the rosult is

(2.8) f (B+wz)4 +cJX4z + 4t

(To verify this formula, one uses It= nxxt+4yYt+$z t+4t and #he

relations (2.5) together with s cos a = Xc' s sin a = - 0C.)

Tho last two sots of equati-ns nak; it possible to express Ber-

,I t" noullits law in terms of $(xvy, zt);

(2.9) R + gy + 1 (grad 4)2 + (s+.z)$ .wx42 _- = 0

Suppcse now that F(X,Y,Z;t) = 0, is a boundary surface

(fixed or moving) and set

(2.10) F(x cos a+...,y,-x sin a+...;t) t(x,y,z;t) I

so that f(x,y,z;t) = o is the equation of the boundary surface

relative to the moving coordinate system. The kinematic con-

dition to be satisfied on such a boundary surface is that the

particle derivative * vanishes, and this leads to the boundary

condition

i(2.11) 4xfx + 4yfy + 'z (s+Qz)fX + WXfz + ft

yy z z 1 '
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relative to the moving coordinate system upon using the appropriate.

transformation formulas. In particular, if y - W(x,z;t) = 0 is

the equation of the free surface of the water, the appropriate

. kinematic condition is

(2.12) y zVF + N. V Vt

to be satisfied for y = 'l * (The dynaric free surface condition

is of course obtained for y = A from (2.9) by setting p = 0.) t

We turn next to the derivation of the appropriate conditions,

both kinematic and dynamic, on the ship's hull. To this end it

is convenient to introduce another moving coordinate system

Of . x,,yl,zt which is rigidly attachod to the ship. It is

assumned that the hull of the ship has a vertical plane of symmetry

(which also contains the center of gravity of the ship); we locate

the x',y'-pl-ne init (cf. Fig 1.2) and suppose that the y'-axis

contains the center of gravity. The oI-xl,yI,zI system, like

the other moving system, is supposed to coincide with the fixed

system in the rest position of equilibrium at t=O. The center of

gravity of the ship will thus be located at a definite point on

the yl-axis, say at distpnce y. from the origin 01: in othor

words, the systom of coordinates attached rigidly to the ship is

such that the center of gravity has the coordinate (O,y ,O).

In the present section we do not wish in general to carry

out linearizations. However, since we shall In the end deal only

with motions which involvo small oscillations of the ship relative

ouierztln.Hwvr sicAes~l nteedda ny''



to the first moving coordinatu system o-x.y,2z, it is convenient

and saves time and space to suppose even at this point that the

angular displacement of the ship relative to the o-xyz system

is so small that it can be treated as a vector 4:

(2.13) 0 1i + QJ0 3 k

The transformation formulas correct up to the first order terms

in the comsponents q of , are then given by:

X1 X + 0 3 (y7-y 0  a 2z

(2.14) y + as zasly y d ox

with c of course representing the y-coordinate of the center of

gravity in the unprind system* It is assumed tyat - is a

small quantity of the samne order as the quantities 0 1 and only

linear terms in this quantity havo been retained* (Thu verifi-

cation of (2.14) is easily carried out by making use of the vector-

product f ormiula 4 = 0 X r, for the snrall displacement 6. of a rigid

body under a small rotation 0.)

The equation of the hull of the ship (assumed to be sy nwotrical

with respect to the x',ytoplane) is now supposed given relative to

tho primed systvm of coordinates in the form:

,*\1
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(2.15) zI = -(xt,y') , 0

The equation of the hull rolative to the O-x,y,z-system can be

written in th: form

(2.16) z+9 2 x- 1 (y-y ) - r(x,y) + [Q2z-03ly-y )]9x(Xyj

+1(y cV.y)-Q 1 ] x, y) = 0 , z'c0c,

when higher order torms In (yc-y') and 9 arc neglected, The left

hand side of this equation could now be inserted for f in (2.11)

to yield the kinematic boundary condition on the hull of the ship,

but we postpone this step until the next section.

The dynamical conditions on the ship's hull are obtained

from the assumption that the ship is a rigid body in moticn under

the action of the propeller thrust T, its weight Mgj, and the

pressure p of the water on its hull. The principle of the motion

of the center of gravity yields the condition ,

(2.17) d(si + y = p n d$ + T - MgJ

By n we mean the inward unit normal on the hull. Our moving

coordinate system o-x,yz Is such that w and =.09

so that (2.17) can be written in the form

- It"
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(21)Msi Ms wk y0  in p n dS +T -gj

with p defined by (2.9)o The law of conservation of angular

momentum is takon in the form:

(2.19) ~ (R-R )X(R-R )dm R- fPRR))n dS + (RM *

position vector of the element of mass dm relativ,:; to the -fixed

coordinate system. R fixos the position of the cog* andR
C

locates the point of application of thc. propeller thrust T. also

rolative to tho fixed coordinate system. We introduce r = (x'YSz)

as the position vector of any point in the ship relative t c thCe

moving coordinatc systeam and set

(2.20) q r-y

so that q is a vector from the cog. tc any point in the ship. The

relation

(2.21) R1 R + c + 9) X q

holds, since + 0 is the angula-r velocity of the ship; thus

(2#41) is simply the statument of a basic kinematic property of'

rigid bodies* By usin~g the last two rolaticns the dyrnarical



K, condition (2.19) can~ be expressod in tea'ms or qua~ntities measured

with respect to the moving coordinate system o-x,y,z, as follows;

(2.22) ~ (r-y J x [ (w + ) X C-yc )] dm

f(ry J)n d+ (RT-R )T

S

We have now derived the basic eqjations for the notion of

the ship* 'What would be wanted in general would be a velocity

potenti"al 4(x,y,z;t) satisfying (2.11) On the hull of the ships

conditions (2.9) (with p = 0) and (2.12)' on the free surface of' the

water; and conditic.ns (2.17) and (2.22), whiich invclve 4, under

integral signs through the pressure p as given by (2.9). In

addition, there would be initial conditions and conditions at co

to be satisfied. Detailed considerati,:.n of those conditionis, and

the complete formulation of the problem of determuining 4.(Xjysz;t)

under various cnditions will be postponed, however until later on

since we wish to carry out a linearization of all cf the conditionms

formulated here*

3. Linearization by a formal perturbation 2rocedure.

Because of the complicated naturc. of' o.ur cunditions, it seemsi

wiso to carry out tho linearization by a form~al development in

order to make sure that all terms of a given order are retained;.

this is all the racre necessary since terms of diff'erent %-.rders

must be considered* The linearization carried out her,. is basedK

JAf
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on the assumption that the inotion of the water relative to the

fixed coordinate system is a small cscillation about the rest

position of equilibrium. It follows, in particular, that the

elevation of the free surface of the water should be assumed to be

small. We do not, however, wish to consider the speed of the

ship with respect to the fixed coordinate system to be a small

quantity: it should rather be considered a finite quantity. This

brings with it the necessity to restrict the form of the ship so

that its motion through the water does not cause disturbances so

large as to violate our basic assuription; in other words, we must

assume the ship to have the form of a tlin disk. In additicn, it

is clear that the velocity of such a disk-like ship must of neces-

sity'maintain a direction that does not depart too much from the

plane of the thin disk if only small disturbances in the water are

to be created as a result of its inotion with finite speed. Thus

we assume that the equation of the sh,pts hull is given by

(3.1) z = ph(x',y') ,z > 0

with P a small dimensionless parameter, so that the ship is a

thin disk symetrical with respect to tho x',yt-plane, and Ph

takes the place of i: in (2.15). (it might be noted in passing

that this is not the most general way to describe the shape of a

disk that would be suitable fcr a linearization of the type carried

out here.) We have already assmuaed in the preceding section that

the moticn of the ship is a small oscillation relative to the moving

I t I
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coordinate system owx,y,z -an assumption that, in fact, is made

necessary by our basic assumptions concerning the linearization.

It seems reasonable, th erofore, to develop all of our basic

* quantities (taken as functions of xy,z;t) in powers of P, as

follows:

(3.3) i(x,z;t;P) P + " +

(3-3) vt~,(t;P3) =n + P + + *

(3.6) Q(t;P3) Pe + 20 +

-c y +~ 2  + ** *A

The first and second conditions state that the velocity potential

and the surface wave avmplitudes, as seen from the moving system,

Kare small of order P. The speed of the ships on the cther hand,

and the mngular velocity of its cog. about the vertical axis of

the fixed coordinate system, are assumed tG. bca of cavier zero. (it

will turn out, however, that W 0 - a nut unexpected result.)

The relations (3.6) and (3.7) serve to mziku precise our previous -

assumption that the motion of the ship is a small oscillaticn

relative to the system o!.x,y,zo

*We must now insert these developments in the conditions

derived In the previcus Slection. Tkho free surface co.nditions are4
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treated first. As a preliminary stop we observe that

(3.8) 4(x,z;t;P) = P[41x(xO,zO.t) + vt41 lXy(XO,z;t) + o..]
]2

+ P [42x+W 2,$+ .6..

+

P$l(XOz;t)+P 2 CllXy (XOz;t)+4 2X(XOZ;t))

+ O O . . .o e . . .o . e o * . . , I

with similar formulas for ether quantities when they are evaluated

on thQ free surface y = It Here we have used the fact that VI

is small of order 0 and have developed each term in a Taylor series.

Consequently, the dynamic free surface condition for y -q arising

fror (2.9) with p = 0 can be expressed in the form

g(P41 +p2 2 + ..] + IP3 (grad $1)2 + *so]

+ [s ]P PA P(3.9) + 1+... " • L X 2)'

-X(W +Q +P4+ )P_1Z +P (2( 4lx+4 ). 0 01!

S0lt+p 2 (Il14lty+42t)+.]= 0

and this conditicn is to be satisfied fur y *O In fact, as

always in problems of small osaillaticns of continuous media, the

boundary conditions are satisfied in general at the equilibrium

-v
*2 '
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position of the boundaries. Upon equating the coefficient of the

lowest order term to zerc we obtain the dynamical free surface

condition

(3.10) gtl+(So+%z)41 - o z-t = 0 for y 0

and it is clear that conditicns on the higher order twrns could

also be obtained if desired, In a similar fashion the kinematic

free surface condition can be derived from (2.12); the lowest crder

tem in yields this condition in the form:

(3.11) 41y - (8o+ waz)itx + & o x I z + t = 0 for y = 0

We turn next to the derivation of the linearized boundary

conditions on the ship's hull. In viow of (3.6) and (3.7), the

transformaticn formulas (2.14) can be put in the form

(XI = x+PO 3 1 (Y'Y) "PQ21z

(3.12) y' = y-Py1 +PGllz-g 3 1x

-= z+p 21x.Qll (yy )

when terms Involving second and higher powers of P are rejected.

Consequently, the equatiCn± (2.16) of the ship's hull, up to terms

in P , can be written as follows K

_--



z+PG 2lX-PQl (y-y,)-Phlx+P 31 (y-y,)-PQ21 ,y-.py1 + l3G1l -- Q31x] = 09

and, upon expanding the function h, the equation becomes

(3.13) z+pq21x- 0l(y-y)-Ph(x,y)+... a 0 ,

the dots representing higher order terms in Po We can now obtain - / i

the kinematic boundary condition fPr the hull by inserting the

left hand side of (3.13) for the function f in (2.11); the result 4
is

o= 0

(3.14)
"So 8 (a 21"Mh x)+x 1+0 21 X-0ll (Y-YC)

when the terms -f zero and first order only are taken into account,

It is clear that these ccnditions are tc be satisfied over thep

domain A of the x,y-plane that is covered by the projection f the

hull on the plane when the ship is in the rest positiln of equili-

brium. As was mentioned earlier, it turns out that W = 0, ioe. 4
that the angilar volocity about the z-axis of the cog. of the ship

in its course rust be small of first order, or, as it could also

be put, the curvature of the shipts course must be small since the

speed in the course is finite. The quantity s1 (t) in (3.4) thus

yields the oscillation of the ship relative to the x-axis.

* I -j ,



A.-.

It should also be noted that if we use z = wph(x,y) we

* rfind, corresponding to (3.) that.

41z -so 0oz+hx) + ("1.+,1)x - 11 (y-y')*

This means that A must be regarded as two sided, andi that the

list e'~isttion is to be satisfied or the side or A whiAch races '

the negative z-axiss The last equation and (3.14) implies that

pmay be discontinuous at the disk A.

The next step in the procedure is to substitute the develop-

ments with respect to P3, (3.2) - (3.7). in the conditions for the

* ship's hull given by (2.18) and (2.22). Let us begin with the

integral I p n do which appears in (2.18). In this integral S
* S

is the immersed surface of the hull, n is the inward unit normal

to this surface and p is the pressure on It which is to be calcu-

lated from (2.9), With respect to the o-x,y,z coordinate system4

the equations of the sym~uetrical halves of the hull aref

S 1 z H H1(xastip) fl +f2

(3-15)

32: z H 2(xyptp) -f +f

* where
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f Ph + P2[ 3 1(Y-Y )hx(g 31x+Yl)hy) + 0(p 3 )

(3.16) + 2

f2 "p02 1x p 1 1 (y'y )  °(p ) '

We can now write

S SI  S2 ':t '

1 S2

in which nI and n are given by

1 2y-Hi i+H -jk -H 'Hi-H p*ic

We can also write

p n ds = pg fy n ds + pi n ds=

S S V

S-pg y n ds + Pinlds, + p, n ds2

f1 S2.S SI1 S2  f ,

where pl' from (2.9), is

(3.17) P1  -p[ (grad j)2 + (s+uz)i. xa z  it]*

1x
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if S 0 is the hull'surface below the xz-plane, the surface

area SOWS is of order pand in this area each of the quantities

yH H1 0 H2 is of order 3.Hen~e

- da -syn ds + (ij+J) 0 (P) kl (12
S S

0

From the divergence theorem

y n ds V.

where V is the volume bounded by S 0 and the xz-plan-e. With an

accuracy of order P3. V is given by

V =213J dA - fi3(y,+Q 31x)dB =213 ]hdA - 2P3 I( 1+%hdx
A B A L

Here A is the projection of the hull on the vertical plane when the

hull is in the equilibrium position, B is the equilibrium water line

area, and L is the projection of the cquilibrtturr water line on the

x-axise

if WP2are the respective projections of the imr.ersed

surfaces S 1 0 S2 on the xy-plane we have

.MVjII



j, p1 di a * i~ (xv y*,u1 t) 19 w1 f P3(x,, ,,H2; t)H 2xdW2 }

S WW

+ j~ f j1(XOYPHt)H1~dW1 - dw
'Wi w2  J

f c pl(xtyHl;t)dW, f p1(xsyAH 2)t )dW2

J, 2

16,1ithe n 2 is equal to As Each of the differences W-As

w -A is, however, an area of order F. rom~ this and the fact that

Keach of p, H, Ily H2~ 2  is of order f;it follows that

*31

,rids = {fpj(xyq,;t)Hlxmpl xYH;)I~dA+O(p3)

S

Jti(p'(xpyDHl;t)Hy..-pl(xyH 2;t)i JA+o~p3

M kfJfp1 (Xs'40Hlit)a.pl(,py#H i)JdA+0(p2)~

A

It was pointed out above that may be discondinuous on A.

Hence from (3.17), (3.2), (3-4)

(P1 (xpy#H 1 t p4tsd~Y + 0 (p)

~pi~xy 2Hat) P + 0(p2



Here the + and superscripts denote values at the positive and

negative sides of the disk A whose positivo s9de is regarded as

the side which faces the positive z-axis. If we substitute the

developments of HIx, glys H2x, H2 y and (3.19) in (3,18), then
collect the previous results, we find

p ds =[h 1)! oi)( it-Sod dA O("

2pgPjhdA - 2pgp 2J(y 1+x )hdx

L+( .Al Lt o 1dA " ..)

(3.20) +p [ y ' A
A

-k 9P1(It-So1 x) + (4it-so~ix)'dA+O( p2)1

The integral fp(M-y0j)x 1 ds which appears in (2.22) can beS
written

p(r-ycj)x A ds = -pg y(r-yc)xn ds. .

nds 1

rlZ-yc )x dS2
Sg

3 --

f:

% .A
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If we use the same procedure as was used above for the expansion

ofp 31do we find
S

'i p(r--y )x n ds

(Y--e

+j pflx($itws 0lj)+-x($lt-,jjl)-dA+0(P 2)l

p~JxhdA-2ogp~e /-y )h dA

-2 PgP 2yj lxhdx-pgp293 /x 2 hdx
L

+ 0(p)

We now assune that the propeller thrust T is of order

and is directed parallu. to the x'axiA? that is

P2'LIt

=A
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where i t is tho unit vector along the xf-axis. We alsc assume that

T is applied at a point In the loi7itudinal plane of symnetry of

the ship J units below the center of mass* It then follows that

9. P23
(3.22) T * 2T+ O(3'),P-

and

(3,23) (RT - R )x T = -. 1 JxT

= £ 2 .,o€p3) .

The mass of the ship is of order P. If wu write M =Ml and

expand the left hand side of (2.18) in powers of P it becomies

±(I; 1 sr~S 2 +O( 3 )]+j[(M P l+O(P3 )J]-k[O(p 3)]

(3.24)

= p n ds + T -llg j
S

The expansicn of the left hand side of (2.22) gives

21~p]j~o(p)]k(1 3 1 p20 3  ))i[01 2 ] J (2)+[31P 931+0(p

(3.25)

= p(r-YJ)x n da + (.-IT-Rc)X T
S

I,

" -
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where PI3 1 is the moment of inertia cf. the shap about the axis

which is perpendicular to the longitudinal plane .;f symmetry cf

the ship and which passes through the center of masse

If we replace tho pressure integrals and thrust terms in the

last two equations by (3o20), (3.21), (3.22), (3.23), and then

equate the coefficients of liko powers of 0 in (3.24) and (3.25)

we obtain the following linearized equations of motion of the ship.

From the first crder terms we find

0(3.26) S

(3,27) 2pg J PhdA = MlPg

(3.28) f xPhdA = 0

(3.29) 1 (lt"Jlx) +"(Jlt- so- x )'IDA =.o
A

(3.30) f [x( it-So/ixl+-x( It-SoAi)']da 0

A"
(3.31) { 0

or by (3.29)

A

(3-3) f y(/lq~solx) y( l-so ,X)4dK

"7

tio. T
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From the second order terms we iid

(3.33)

M~y1  ~p8{Y1+x31)ha

(3-34)~ -2pgJ1(y 1+x031)hdx

L 31

A

3 1 L

.2pgO lfx hdx4,T

A

or by (3.30)v (3031)

,!W't



.... .......... .. ,

M5o-

I1 -2pg 3 1J (y-yp1dhdA -
(3.35)

"2pg@31fx2hdx + i T

+p - +-(y-y )hx][(Jit-soJlx1++ (tSo ix)']dA
A y 0 0 tol l

Equation (3.26) states that the inction in the x-directi.n is

a small oscillaticn relative to a moticn with uniform speed

s cons't. Equation (3,27) is an expressicn of Archimedes'

law: the rest positici cf equilibrium must be such that the weight

of the water displaced by the ship Just equals the weight of the

ship. The center of buoyancy of our ship is in the plane of sym-

metry, and equation (3.28) is an expression of the second law cf

equilibrium of a floating body; namely that the center of buoyancy

for the equilibrium position is on the same vertical line, the

yl-axis, as the center of gravity of the ship.

The function I must satisfy

dlxx + Ilyy + lzz 0

in the domain D 9 A where D Is the half space y c 0, and A is the

plane disk defined by the prcjection of tho submorged hull on the

xy'-plane when the ship is in the equilibrium positicn, We assume.

that A intersects the xz-planes The bcundary conditicns at each

side of A are

Am.



(3.36) 11 j~y

I 1z .s 0 (hx+"2 1) + (0~ 1 +' 2 1 )x 6 1 1 (y y0

The boundary condition at y =is found by eDliminating n1 from

(3.10) and (3.11). Since -o 0 these equations are

1y - 5cLx 1, ni

and they yield%

(3.37) 2 29cit+g 1

for Y 0. The boundary conditions (3.36) and (3.37) show that

, depends on 011(t) and 021(t)o The potential problem -

cntheoretically be sclvd fcr in the- furm

without using (3.29), (3.30), (3.32)., The significance of this

has already been discussecd in Sec.c 1 Ini rolaticn tc cquaticn (1-14j),

The genoral procedure to.: b. fcll,,wed in solving all pro,,blemns was

all discussed there. I.I r

L ____

dill



The general potential problem defined above will be the sub-

ject cf a separate study. The remaindler of this paper is concerned

with the special case of a ship which moves along a straight cuurse

into waves whose crests are at right angles to the ocurse. For

this case there are surging, heaving and pitching motions, but

0 = 2 0 and the potential function i is an even

function of z. Under these conditions the equaticns of motien are

mrr simple. They are

(3.38) 14V5l Aphxl-o/. .A + T

AA

-2pgQ Jx2hdx +-AT

It will be shown in the next sectiLon that an explicit Integral i
representation can be found for the corrosponding potontial function

and that this leads tc integral representations for s11y1 and 31



4. Method of solution of the problem of pitching and hoving of ,,

ship ins a sea-way havina normal incidence.

In this section we, derive a method of solution of the problem

of calculating the pitching,, surging, and heaving motions in a sea-

way consisting of a train of waves moving at right angles to the

course of the ship, which is assumed to be a straight line (i.e.

* c a 0). The propeller thrust is assumed to be a constant vector.

The harmonic function 41 and the surface elevation Yt,

therefore satisfy the following free.surface conditions (cf. (3,10)

and (3.11), with W0 = 0):

g LI + So04X- 4it 0

(4.1) at y 0

ly - oqlx + Alt 0 *1;
The kinematic condition arising from the hull of the ship is

(cf. (3.14) with 021 l 1i 1 0):>1i
(4.2) 4l- 0ohx

Before writing down other conditions, including conditions

at co, we express 4i as a sum of two harmonic functions, as follows:

(4.)1(x..y4z;t) I(x~yZ) ,I (xy zt). '

ILI 2

1~~~~ 4Q 
'

++



Here -o is a harmonic function independent of t which is also an

even function of z. We now suppose that the motion of the ship

is a steady simple harmonic motion in the time when observed from

the moving coordinate system o-x,y,z. (Presumably such a state

would result after a long time upon starting from rest under a

constant propeller thrust*) Consequently we interpret " 1 (x,y,z)

as the disturbance caused by the ship, which therefore dies out at

o; while %l(x,y,z;t) represents a train of simple harmonic plane

waves covering the whole surface of th-i water. ThusA3 is given,

with respect to the fixed coordinate system O-X,Y,Z, by the familiar

formula

62

X C e 9 sin (dt + -X + p),

with 6 the frequency of the waves. In the o-x,y,z system we have,

therefore :

91xyzt y 2 a 02y6 62
€4.X) 5Sxsynz;t) c -s x + (6 + )t + p].

We observe that the frequency, relativz. to the ship, is increased

above the value 6 if s0 is positive " ie. if the ship is h'ading

into the waves - and this is, of course, to be expected. With this

choice of )(1 it is easy to verify that /o satisfies the fc llowing

conditions:

L .

& ji/ I
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(4.5) So% + gX1 0 at y 0

obtained after eliminating 41 from (4..), and

(4.6) Xo a o Ao,

with A, as above, the projection of the ship's hull (for z > 0)

on its vertical mid-section. In addition, we require that . 0

at 0D

It should be remarked at this point that the classical

problem concerning the waves created by the hull of a ship, first

treated by Michell (8], Havelock (2], and many others, Is exactly

the problem of determining (0 from the conditicns (4.5) and (4.6).

Afterwards, the insertion of X o in (3.38), with =O

41t a 0, leads to the formula for the wave resistance of the ship -

i.e. the propeller thrust T is determined. Since y, and Q 3 are

independent of the time in this case, one sees that the other

dynamical equations, (3.39) and (3.40), yield tho displacement of

the cog, relative tc. the rest position of equilibrit (the so-called

heave), ad the longitudinal tilt angle (called the pitching angle).

However, in the literature cited, the latter two quantities seem

to be taken as zero, which implies that appropriate constraing

forces would be needed to hold the ship in such a position relative

tu the water. However, the main quantity of interest is the wave

resistance, and it is not affected (in the first order theory, at

least) by theheave and pitch.

I ______0



Wo proceed to the determination ofX4, using a method differ-

ant from the classical meathud and fcllowing, rathbr, a ccours,. which tK

it is hoped can be generalized in such a way as to yield solutions

in more difficult cases4 ~

Suppose that we know the Groents function G(,Qtt,~r;x~y~z)

-such that Gis a harmonic function for NIc 0, > 0 except at

(x,y.z) where it has the singularity 1/r; ra G* s-tisfies the

boundary conditions

(4.7) G* +lcG* =0 on Yt 0

G 0 on ~0

where k =g/S~ 0 Let 2: denote the half-plane v'= 0, ?: > 0

and let ?denote the half -plane r = 0, %k 0. Green'sa fo(--rmula shows

that

- -'X fJX1 Gdtdr + Jf XJ,, 1 G~dtdr. -if XG*d~dvt.. ..

Then, since

fj )q & r, + X,,,(I~tdg -Xg G*)d4.

2:Z: " I

tq a_4,G____

'~ iW0



we have an explicit representaticrn cf the sBclutlon in the fcrm

X0(z1y.W - XIJ)!G&dgdq or

(4.8) ~.,(xy,z) 1 ff h ( ,u)G*(4,*, 0 Jx, yz)dtd

A

upon using (4.6).

In order to detOrmine G* consider the Green's function
G(4,jvt4x,y,z) for the half space vL 0 hich sctistes

G + kG~ -0

on v= 0. This function can be written as

r- r +g

where

ri.3

x L

I 
r. -.
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and g is a potential function in q< 0 which satisfies

g + = 2k

on q= O. The well-known formula

2k 2k fpeTPYJ(p+ )2] dps2k ...... .-x )Z+"'+l(..-z) o +V t + _z. . 0'

in which the Bessel function Jo can be expressed as

2 /2

J2 z 2) ~ f cos[p(!-x)cos G]ccs[p(r-z)sinQ]dQ,
O , C-) (4 z ?-
0

allows us tc write

co iv/2

+ k J popy cos[p(4-x)ccsB]cos[p(-z)sinQldidp
0 0

for 11 0 and y < 0. It is now easy tu s~e that

ro /2

9 + kg8 * k f pe~~losp xocQC~-~igdd
0 0

is a potential functicn in v < 0 liioh satisfies the boundary

conditiono An interchange of the order of integration gives

-. ;

I~

i . < ,k, ..- ,%+41+.... i ,+ ...k. . .I --. .:+ ,



ge ~ os(p(4-.z)uin ale(Y')+(X)OO
A~c Tr f dlf dp,

0 0

where k denotes the real part. If we think of p as a complex

variable, the path frcm 0 to co in the last result can be replaced

by an equivalent path L:

hipp[(y+'L)+i(4"z)cos 0]g +kg = AL dll p cos [p(4-z)sinQ]e dp

o L

Since the right hand side of this differential equation fcr g is

expressed as a superposition of exponentials, in and j, and

since some freedom is allowed in the choice of L, it is evident

that

ir/a p[(y+q)+i(c-x)cos *]
S f dO J coa[t(dain O. dp

0 L Ip-p Cos 0

provided L can be prcperly chosen. Thi path L, which will be

fixed by a ccnditicn givan below, must, cf ccurse, avcid the polo

at p. k/cos2a.

It can now be seen that the functiL.n G (4,) ,x,y,z)

G(Cng;x,y,z) + G(Viv,4;x,y,-z) satisfies all of the ccnditions

imposed on the Green's function employed in (4.8): the sum on the

right has the proper singularity in VcO, O., it satisfies the

boundary ccnditicn (4.7) and

i



G+ G~(DJ~Dz

is zero at r. - 0 Thereftore

TV/2p((y+,q)+i(9-x)cos @I
+.k2 fdcfos(pzsinoe 2 dp

a L k-pcos

Thei substituticn cf this in (49.8) gives finally

2F- 1 dp1 ddD
A t~"-X 2211+7 2

~dIDLfOca(PZ sinQ)e (y~)i~dp xcaG di'w~

' A L k-pcQ1

A ccnditio;n inposad onX (,,z) is that (Ixoy,,z) o as x o +c .

This conditicn, is satisfied if we take L tc be the path shown in

Fig. Lj.1.

LI
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ljcos 0Q

Fig. 4.1*

The Path L in the p-piano

The function is given by

2

1  X+ X0 Ce 8 9 i t+~l

cid thleref ore

2

0089 g2 (6 )t+p] x

If this Is substituted in the equrati.n fcr the surge we h.ave

27 2 62

H1;1 uPCC ff [6cxx (6 t+pI dxdy

A -

2PnoJ h X x dy + T

1x _

A
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The last equation shows that in order to keep sI bounded for all t

we must take

(4.1l0) T = 2ps 0 Jf hx Xox dxdy
A

whe re

"So J.0= Ojh,[gt (C -x)- ,(-']

A (.x)2+(.y)21/2 (ex)2+(+ )2 d

29p (y+)+i(-x)cosQJ

0 I-~f ht {7 jIwo cose e dp dd+1 "T- ' g2 dQ dd
0 pCos 0

Equation (4.10) gives the thrust necessary to maintain the speed S,

or inversely it gives:-the speed so which corresponds to a given

thrust. The integral in (.10) is called the wave resistance

integral. As one sees, it does not depend on the seaway* The

integral can be exprossed in a more simplu form as follows.

The function X(X,y,o) is a stum of integrals of the type

tyedd.

A

If an intogral of this type is substituted in the wave resistance

integral we have
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I Ifhx(x~y)h (tDytOf((D,)Ixey) dgd,4xdy *I

say. This is the same as

h4 'q dxdydtd = If
A A

and we see that 1=0 if'

f(~j1;x~) - (X,400'n

Therefore

Tii Jh(x~y)he4r)f dtdvqdxdy

A A

whe re

Tr1- o-&f RPcos 8p (+,) OSIP(I-x) Cos Y) djp
=f dg Be -sp Cos 2

Since& f is zero except for the residue from tha integration along
L

the semi.-circular path about

9

SZOOSZ 00879

0--



we find from the evaluation uf this residue that

112 f/2 kyj e~

fl = O 00 (k(-x) co d
,, , 0 0

Now if we define

P() = f hx (x, y) eky seoe 0co (kx sea 0) dxdy

A

"",) k see 9Q(0) f hx(x'Y) °  s sin (kx sec Q) dxdy

A

we can write

w/2
Tink2,-2 (p2 +Q2 ) se 3  d.

0l~ 0

This is the familiar formula of Michell for the wave resistance.

The surge is given by

+28 f2x0X +( t + dxdy

(g6+o )0 j hIA
Hereafter we will suppose for simplicity tht there is no

coupling between (3.39) and (340), sothat /xhdx = 0. The

L
substitution of (4.9) in (3.39) there gives the following equation

for the haave.

'P.-
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y j+(2pg f dry p6 a7  162.x (6 2

L A

-2 oIfh% dxdy

The time independent part of yl, the heave component of the trim,

we denote by y, it is given by

(L..1) (g . h dx)y = -so//A ox dxdys.

L A

is the vertical displacement of the center of gravity of a ship

moving in calm water from its rest position. The integral on the

right hand side of (4.11) is even more difficult to evaluate than

the wave resistance integral. As faid as the authorz are aware,

the integral has not appeared in the literature.

The responso of yl to the sea is given by

2.p~ h e9 co 6 + (+8sodx2

L

For the case under consideration, the theory predicts that resonance

in the heave occurs when

.!L
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1/2

+ hdx

g L

The equation for the pitching angle is

+2p C (" hdA + f ,hx]6 (1

A L ]

2pd-f fxy(x-(yYh# X71h]Co p d

+• PT - 2ps 0o ./c,-(y-yA Ihxl Yox d,.
A

The time independent part of * 31' 31' is given by

2pg [J(y-y('),hdA + / x?-h dx]a32g A L @31

- tT - 2ps0 f[xh -(y-y')h ] 'Xo dA
A

S(1-:,. T. 2ps J € xhyx]Xx dA. .,

The ang1e 031 is called the angle of trim; it is th6 angular dis-

placement of a ship which moves with the speed s in calm water*

10



The response of~ B31 to the sea is

- A

~~ps [(YhAfxhdx] - I

and we see that the theory predicts resonance when

12fe (yy)hdA +I/x2 hdxI,1/
g 31 L j
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